Parallel mining for fuzzy association rules.
نویسندگان
چکیده
منابع مشابه
Mining fuzzy periodic association rules
We develop techniques for discovering patterns with periodicity in this work. Patterns with periodicity are those that occur at regular time intervals, and therefore there are two aspects to the problem: finding the pattern, and determining the periodicity. The difficulty of the task lies in the problem of discovering these regular time intervals, i.e., the periodicity. Periodicities in the dat...
متن کاملParallel Mining of Association Rules
We consider the problem of mining association rules on a shared-nothing multiprocessor. We present three algorithms that explore a spectrum of trade-oos between computation, communication, memory usage, synchronization, and the use of problem-speciic information. The best algorithm exhibits near perfect scaleup behavior, yet requires only minimal overhead compared to the current best serial alg...
متن کاملEecient Parallel Data Mining for Association Rules
In this paper, we develop an algorithm, called PDM, to conduct parallel data mining for association rules. Consider a transaction as a collection of items, and a large item-set is a set of items such that the number of transactions containing it exceeds a pre-speciied threshold. PDM is so designed that the global set of large itemsets can be identi-ed eeciently and the amount of inter-node data...
متن کاملFuzzy Decision Tree Induction Approach for Mining Fuzzy Association Rules
Decision Tree Induction (DTI), one of the Data Mining classification methods, is used in this research for predictive problem solving in analyzing patient medical track records. In this paper, we extend the concept of DTI dealing with meaningful fuzzy labels in order to express human knowledge for mining fuzzy association rules. Meaningful fuzzy labels (using fuzzy sets) can be defined for each...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer Science and Cybernetics
سال: 2012
ISSN: 1813-9663,1813-9663
DOI: 10.15625/1813-9663/20/2/1467